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Abstract-The response of an isotropic cantilever beam of finite length under the action of
frictionless cylindrical and flat indenters is studied. Solutions are obtained through a local­
global technique, which accounts for both the local behavior near the indenter, as well as the
global beam behavior. The method of analysis superposes an infinite-layer solution. derived
through the use of integral transforms with a pure-bending beam-theory solution. Local indenter
stresses, as well as displacements and rotations, are computed for each case and plotted for
various ratios of contact width to beam thickness, and for various positions of the indenter.
Where possible, the results are compared to Hertz theory of contact stresses and to beam­
theory displacement and rotation solutions.

I. INTRODUCTION

Consider the finite layer of len~h I and thickness h shown in Fig. 1. The layer is fixed
at one end, free on the other and loaded by an indenter centered at a distance 10 from
the fixed end. Although the theory is applicable for an arbitrary geometry, the types
of indenters studied are cylindrical [Fig. l(a)] and flat [Fig. 1(b)]. Such problems are
seen quite often in mechanical applications, and may also serve as models for impact
phenomena in gears and turbine blades. Usual methods, which use a beam-theory
solution to obtain an overall load-displacement relationship and then a Hertzian contact
solution to calculate local stresses under the indenter, are fairly limited, as will be
shown in this paper. The method of solution used in this paper is the superposition of
an elasticity solution with a beam-theory solution. In this way, local contact stresses
are represented by the elasticity solution, while the global stresses are represented by
the beam-theory solution.

A problem of the type considered here has already been solved by Keer and
Miller[ I], and by Keer and Ballarini[2] for a beam that is clamped or simply supported
at both ends and loaded by a cylindrical indenter. Although not treated numerically
here, the intermediate case of a partially fixed end can be solved for each type of
indenter in a similar manner. Furthermore, the methods used in this paper can be
modified and expanded to study plate or shell problems involving similar loadings[3].

The physical quantities of interest are the stress distribution under each indenter,
and the displacement and rotation of the beam under each of the indenters. The ratio
of contact width to beam thickness, clh, is treated as a known parameter in both
problems. In the cylindrical indenter problem, the ratio of indenter arm length to beam
thickness. lo/h. is treated as an additional known parameter. However, in the flat in­
denter problem. the parameter I./h = lo/h - clh (i.e. the distance from the fixed end
of the beam to the left-hand end of the indenter) is introduced as an additional known
parameter. In this manner. for a given II/h, when the quantity clh is varied over a range
of values. the phenomenon known as "receding contact" can be observed in the flat
indenter problem. By varying the proper parameters as required by the type ofproblem,
then calculating deflections. rotations, loads and stresses, an extensive study of the
response of an isotropic cantilever beam subjected to various loading conditions can
be performed. The results obtained are compared to beam theory solutions and Hertz
contact solutions for accuracy assessments.

2. CASE I: CYLINDRICAL INDENTER-PROBLEM FORMULATION

The problem to be solved is that of an el~stic layer of thickness h and length I
indented by a cylindrical punch on its upper surface [Fig. Ha)]. The conditions at the
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Fig. 1. (a) Problem configuration (case I). (b) Problem configuration (case II).

ends of the layer are those of a cantilever beam, clamped on the left and free on the
right. The solution of the problem will be achieved by a suitable superposition and
matching of an elasticity solution and a beam-theory solution.

The boundary conditions for the elasticity problem can be written as follows:

Tyy(X, h) = O. Ixl<:x:, (2.1)

Txy(X, h) = O. Ixl<:x:, (2.2)

Txy(X, 0) = 0, Ixl<:x:, (2.3)

Tyy(X. 0) ::::: 0, C < Ix I < :x:. (2.4)

uy(x, O) = A - rl2R, O<lxl<c. (2.5)

The beam-theory boundary conditions for the ends of the layer can be written as
follows:

'9 = 0, x= -/0 • (2.6)

Uy = 0, x= -/0 (2.7)

M = 0, x ::::: 1 - 10 (2.8)

V = 0, x = 1 - 10 (2.9)

where M and V are the moment and shear. and '9 is the average value of the slope
measured through the thickness given by

(2.10)

A suitable elasticity solution that represents loading on the upper surface of an
isotropic elastic layer in plane strain. and with no loading on its lower surface, is
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obtained using the techniques of Sneddon[4l, and is given as follows:

89

'l'yy = L= Es(~) cos~~~ +S~A~~) sin(~) ([~ + sh ~ ch ~ + ty sh2 ~] sinh(ty)

- [sh2 ~ - ~2 + ty(~ + sh ~ ch ~)l cosh(ty)} d~, (2.11)

'l'xy = _ f= Es<E> sin(;x) - EA(~) cos(;X) ([~2 _ ty(~ + sh ~ ch ~)] sinh(ty)
Jo ~2 - sh2 ~

+ ty 5h2 ~ cosh(ty)} d~, (2.12)

'I' = f= Es(~) cos(~) + EA(~) sin(~) ([~ + sh ~ _ ty sh2 ~] sinh(ty)
xx Jo ~2 _ sh2 ~

- [~2 + sh2 ~ - ty (~ + sh ~ ch ~)] cosh(ty)} d~, (2.13)

2 = r= Es(~) sin(;x) - EA(~) cos(~) {[(1 - 211) (~ + sh ~ ch ~)
lJ.ux Jo ~(~2 _ sh2 ~)

- ty sh2 ~] sinh(ty) - [~2 + (1 - 211) sh2 ~ (2.14)

- ty(~ + sh ~ ch ~)l cosh(ty)} d~,

2 = r= Es(~) cos(;X) + EA(~ sin(;x) ([~2 - 2(1 - 11) sh2 ~
lJ.uy Jo ~(~2 _ sh2~)

- ty(~ + sh ~ ch ~)] sinh(ty) + [2(1 - 11) (~ + sh ~ ch ~)

+ ty sh2 ~] cosh(ty)} d~. (2.15)

where ~ = ~h, and lJ. and 11 are the shear modulus and Poisson's ratio of the layer
material, respectively. The corresponding equations for a layer in plane stress with the
same loading conditions are obtained by replacing 11 with 11/(1 + 11). Furthermore, this
substitution is to be used through the rest of this paper to convert plane-strain expres­
sions to corresponding expressions in plane stress.

It is seen that on y = h, the normal and shear stresses vanish automatically, and
that on y = 0, the shear stresses vanish. The normal stress on y = 0 is given as

'l'yy(x, 0) = L= [Es(~) cos(;X) + EAm sin(~)] d~.

We let

Es(~) = L'> \jIU)Jo(Et) dt,

EA(~) = Lt' <J>(t)Jl(Et) dt.

Then eqn (2.16) becomes

(2.16)

(2.17)

(2.18)

(2.19)
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The moment and shear, due to the stresses as given by eqns (2.11)-(2.13), are given
by

ME(x) = Lh

y1'xx dy = - LX [Es(~) cos(~) + EA(~) sin(~x)] ~~ , (2.20)

VE(X) = Lh
1'xy dy = LX [Es<E> sin(~) - EA(~) cos(~)] ~~ . (2.21)

We note that eqns (2.20) and (2.21) satisfy the condition

dM
V = dx . (2.22)

From eqns (2.10) and (2.15), the average value of the slope is found to be given
by

- 1 (00 13 - (3 - 2v) sh 13
9E(x) = 2~ Jo 13(13 _ sh 13) [Es(~) sin(~) - EA(~) cos(~)] d~.

For the beam theory solution, the displacement is taken to be of the form

(2.23)

(2.24)

Assuming the hypotheses of Euler-Bernoulli beam theory, the following results are
obtained:

aus ( h)
u~(x) = - a: y - '2 '

s 2~ au~
l' - ---....... -I-vax·

(2.25)

(2.26)

Using eqns (2.24)-(2.26), the moment, shear and average slope are calculated to be

Ms(x) = Lh

YT...... dx = -2D(a2 + 3a3x),

Vs(x) = Lh

1'xy dx = -6Da3'

- 1 ih
au~9s (x) = -h - dy = al + 2a2x + 3a3r,

o ax

(2.27)

(2.28)

(2.29)

where D = ~h3/6(l - v). Thus the solution sought will be a superposition of the
elasticity solution given by eqns (2.11)-(2.16) and (2.20)-(2.23), and the beam theory
solution given by eqns (2.24)-(2.29). The two solutions are matched properly when the
boundary conditions, eqns (2.1)-(2.9), are all satisfied. This is achieved by solving for
the constants aI, a2 and a3 by superposing the two solutions and applying the beam­
theory boundary conditions. Thus eqns (2.6), (2.8) and (2.9) become

ME(l - /0) + Ms(l - /0) = 0,

VE(l - /0) + Vs (/ - /0) = 0,

ad -/0) + aB ( -/0) = o.

(2.30)

(2.31)

(2.32)
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(2.33)

(2.35)

(2.34)

Applying eqns (2.20)-(2.23) and (2.24)-(2.29) to eqns. (2.30)-(2.32) yields the following:

1 ('X {IoU - 10/2) .
al = - D Jo ~ [Es(E) sm EO - 10 ) - EA(E) cos EO - 10)]

+ ~~ [Es(E) cos EO - 10 ) + EA(E) sin EO - lo)]} dE

I ('X ~ - (3 - 2v) sh ~
+ 2J.L Jo ~(~ _ sh~) .[Es(E) sin(E/o) + EA(E) cos(E/o)] dE,

I ('X dE
a2 = - 2D Jo [Es(E) cos EO - 10 ) + EA(E) sin EO - 10 )] e

I - 10 ('X . dE- -W Jo [Es(E) sm EO - 10 ) - EA(E) cos EO - 10 )] T '
1 ('X dE

a3 = 6D Jo [Es(E) sin EO - 10 ) - EA(E) cos EO - 10 )] T .

The two remaining boundary conditions given by eqns (2.5) and (2.7) still need to
be satisfied. First, consider eqn (2.5):

uf.(x, 0) + u~(x, 0) = a - rl2R.

Differentiating with respect to x,

auf. (x 0) + au~ .(x 0) = - R!. •
ax' ax'

(2.36)

(2.37)

Separating eqn (2.37) into a symmetric and an antisymmetric part, with respect to x,
yields

auf. I xa; (x, 0) A + 2a2x = - Ii. '

auf. I ~-" (x, 0) + al + 3a3x- = o.
ax s

(2.38)

(2.39)

Consider first eqn (2.38). Substituting for uf,(x, 0) according to eqn (2.15), combining
terms in Es(E) and EA(E), and making use of eqns (2.17) and (2.18) yields

(C (X [h3 (~ + sh ~ ch ~) x xO - 10 )
Jo q,(t) Jo 6" ~2 _ sh2 ~ sin(Ex) + E2 cos EU - 10 ) + ~

x sin EO - 10 ) ] Jo(~t) dE dt + L'" 4>(1) LX [~ sin EO - 10 )

xU - 10 ) ] Dx
- ~ cos EU - 10) JI(~t) dE dt = Ii" . (2.40)

An asymptotic evaluation of the kernels in eqn (2.40) shows that they are all con­
vergent at the lower limit of integration. However. at the upper limit. the first term in
the first kernel is divergent. This is adjusted by adding and subtracting the term

11 3 (C (X
6" Jo w(t) Jo sin(~x)Jo(~t) d~ dt
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in eqn (2.40) as follows:

h3 fC foc fC [h3
(~ + sh ~ ch ~ )- 6" Jo \flU) Jo sin(~)Jo(~t) d~ dt + Jo 6" ~2 _ sh2 ~ + I sin(~x)

x xU - 10 ) . ]+ ~2 cos ~(l - 10 ) + ~ sm ~(l - 10 ) Jo(~t) d~ dt

fC foc [x . x(l - 10 ) ] Dx
+ Jo cP(t) Jo ~2 sm ~(l - 10 ) - ~ cos ~(l - 10 ) JIW) d~ dt = R .

(2.41)

After simplification (Le. through use of the Weber-Schatbeitlin integral(5]), eqn (2.41)
reduces to

where

'TI'
K2(x, t) = '4 tx.

Returning to eqn (2.39), performing similar manipulations yields

(2.43)

(2.44)

(2.45)

fC foc {h3 ~ + sh ~ ch ~ h3 ~ - (3 - 2v) sh ~
Jo cPU) Jo 6" ~2 -sh2 ~ cos(tt) + 12(1 _ v) ~(~ _ sh ~) cos(~/o)

10 (1 - 10 /2) 10 . x2
}+ ~ cos ~(I - 10 ) - ~2 sm ~(I - 10 ) - 2~ cos ~(I - 10 ) J I W) d~ dt

fC foc { h3 ~ - (3 - 2v) sh ~ . lo(l - 10/2) .
+ Jo \flU) Jo 12(1 _ v) ~(~ _ sh ~) sm(~/o) - ~ sm ~(l - 10 )

+ ;; sin ~(I - 10 ) - .~~ cos ~(I - fo)} Jo(~t) d~ dt = O.

An asymptotic analysis reveals that aU the terms are bounded as ~ -+ 0, but as E-+ 00

the first term of the first kernel is divergent. This is corrected by adding and subtracting
the term
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in eqn (2.45) as follows:
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h3 (C (OC (' (OC{h 3
(~ + sh~ch~ )- "6 Jo <!»(t) Jo cos(Ex")J I(Et) dE dt + Jo <!»(t) Jo "6 ~2 _ sh2 ~ + 1 cos(Ex")

h
3

~ - (3 - 2v)sh~ (1:1 ) + 10 (/-/0 /2) cosl:(/-1 )
+ 12(1 - v) ~(~ - sh~) cos ~ 0 E ~ 0

- ~~SinE(/ -/0 ) - ~COSE(/ -/o)}JIW)dEdt

(C' ) (OC { h
3

(~ - (3 - 2v) sh ~) . (1:1 ) _ 10 (/ - 10 /2) sin 1:(/ _ I )
+ Jo "'(t Jo 12(1 _ v) ~(~ _ sh~) sm ~o E ~ 0

- ~~COSE(/ -/0 ) + ~:sinE(/ -/o)}Jo(Et)dEdt = O. (2:46)

After simplification. eqn (2.46) becomes

(2.47)

where

(2.48)

(2.49)

Equations (2.42) and (2.47) are the two coupled integral equations for the unknown
auxiliary functions "'(x). <!»(x). These equations are solved numerically. Once "'(x). <!»(x)
are obtained. all necessary physical quantities may be calculated.

Stresses may be calculated using eqn (2.19):

(2.19)

The resultant load due to the symmetric stresses is obtained as follows:

The resultant moment due to the antisymmetric stresses is obtained as follows:

M = - I' X'l'YY dx = - !2 (C t<!»(t) dt.-, Jo

(2.50)

(2.51)

In order to evaluate the deflection under the indenter A. the constant ao must be de­
termined. Superimposing eqns (2.15) and (2.24) yields
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Applying eqn (2.7) yields
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(
1 - v) (OC ~ + sh ~ ch ~

ao = - - ..... - Jo ~2 _ sh2 ~ [Esm cosWo)

- EA(~) sinWo)] ~~ + al/o - a2/3 + a3/~, (2.53)

where ai, a2 and a3 are given by eqns (2.33)-(2.35). Substituting eqns (2.33)-(2.35) and
(2.53) into eqn (2.52), and recalling that uy(O, 0) = a, yields

a = (C l\I(t) [ ('"' {I - v ~ + sh ~ ch ~ (1 - cos ~lo) + ..!!L ~ - (3 - 2v) sh ~
Jo Jo ..... ~2 - sh2 ~ ~ 2~ ~(~ - sh ~)

x sin(Elo) - la cos ~(l - loll Jo(~t) dE - ....!... la(31 - 10)J dt
W E2 lW

+ (C c!>(t) [ ('"' {I - v ~ + sh ~ ch ~ sin Elo + ..!!L ~ - (3 - 2v) sh ~
Jo Jo ~ ~2 - sh2 ~ E 2..... ~(~ - sh ~)

x COS(E/o)} JI(Et) dE - : laJdt. (2.54)

An asymptotic analysis reveals that both kernels are bounded as E- 0, but the
fIrst two terms in each kernel are divergent as E- 00. This is adjusted by adding and
subtracting the appropriate terms to yield

(2.55)

where

Ks(t) = 1: v L'"' {(~ ~~ ~h~C~~ + 1) C-~OS~lo) _ ~~Si~(;/~)~

_ 315 cos W - to)} Jo(~t) dE _~ cosh - I (!2.)
h3 E2 ~ t

'Tl' 3 - 2v 'Tl' 2
+ 4" ~ /0 - lID /0(3/ - 10 ), (2.56)

K ( ) =~ (00 (~ + sh ~ ch ~ 1) sin(Elo) _!2. cosWo) } J (I: ) dl:
6 t ..... Jo ~2 _ sh2 ~ + E h ~ _ sh ~ I."t ."

1 - v t 'Tl't 2

- - .....- /0 + '\I(lij - r) - 8D lo. (2.57)

A quantity of interest in this problem, as well as in the subsequent study of the
dynamic case, is the rotation of the beam under the indenter. More specifically, the
rotation of the beam at the point under the indenter about which the moment produced
by the antisymmetric stresses is zero (Le. the "eccentricity" of the load) is of special
interest. This point is obtained from statics simply as

x = -e = MIP. (2.58)

Superimposing eqns (2.23) and (2.29), and making use of eqns (2.17), (2.18) and (2.33)­
(2.35), yields
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- I (C' ("" { h3 ~ - (3 - 2v) sh ~. .
8(x) = D Jo \lI(f) Jo 12(l _ v) ~(~ _ sh ~) (SID ~ + SID ~/o)

- [/0 (/ _ 10 /2) + x(/ - 10 ) - x2 /2] sin E<~ - '0 ) _ (/0 + x) cos t~2 - lo)}

I (C ("" { h3 ~ - (3 - 2v) sh ~
x Jo(~1) d~ dr + DJo <1>(1) Jo - 12(l - v) ~(~ - sh ~)

2 cos W - 10 )
x (cos ~ - cos ~/o) + [lo(/ - 10 /2) + x(/ - 10 ) - x 12] ~

- (/0 + x) sin ~(~2 - lo)} JI(~r) d~ dr. (2.59)

Note that the boundary condition 6( -/0 ) = 0 is automatically satisfied by eqn
(2.59). An asymptotic analysis of the kernels in eqn (2.59) reveals that they are bounded
as E- 0, but that as E- 00, the first term in each is divergent. This can be adjusted
as before to become the following:

6(x) = .!. (C \lI(1) { ("" [_ h
3

(Sin ~ + sin E/o) _ (x + 1
0

) cos E(/ - 10 )] Jo(Er) dE
D Jo Jo 6 ~ - sh ~ e

11' 1I'h2 3 - 2V}- '2 [loU - 10 /2) + x(/ - 10 ) - x2/2] + 24 I _ v dr

+ ~ LC' <I>(t) {L"" [~ (COS:_-s~o; E/o) JI(Et)] dE - ~ (10 + X)} dt

+ sgn(x) e;Jv) [¥ L~I \lI(t) dt - f;1 \lI(t) sin-I (' ~ I) dt] B(e - Ix I)

_ 3 - 2v B(e _ Ix I) (C <I>(t) Y(p - x2) dt. (2.60)
2f.Lh Jlxl t

Thus we can easily evaluate 6 (x = - e).

3. PROBLEM SOLUTION

In order to be able to solve for the auxiliary functions ",(x) and <l><x), eqns (2.42)­
(2.44) and (2.47)-(2.49) must be nondimensionalized. This is accomplished by the use
of the following nondimensional parameters:

8 = c/h, (3.ta)

E = elh, (3.tb)

a: = lolh, (3.tc)

'Y = l/h, (3.td)

u = tIc, (3.le)

y = xle, (3. It)

Dey
(3.2)l!J(x) = Rh3 'IJ1(y),

Dey
(3.3)<!>(x) = Rh3 cI>(y).
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Once the nondimensionalized auxiliary functions 'I'(y), <I>(y) are obtained. eqns (2.19),
(2.50), (2.51), (2.55)-(2.57) and (2.60) can be used to calculate nondimensionalized
stresses, loads, moments, deflections and rotations, respectively. These nondimen­
sional quantities may be transformed back to real quantities via the following
relationships:

P = h2~/(l - v)R,

M = h3ILM/(l - v)R.

A = h2 t:./R,

6=h6/R.

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

In order to assess the accuracy of the results for displacement and rotation under
the indenter, the foRowing beam-theory solutions are used:

1 1
as = 3D P/~ + 2D Mn,

- 1 2 1
as = 2D P(/"5 - e ) + DMUo - e).

(3.9)

(3.10)

It should be noted that, although the formulation of the equations in this paper is
such that they can be adapted to plane stress or plane strain, the use of beam-theory
equations in comparison studies dictates that conditions of plane stress should be as­
sumed in the evaluation of eqns (2.55) and (2.60). This assumption would be consistent
with the use of a thin beam in an experimental verification of the. results presented
here. For the numerical evaluation of eqns (2.55) and (2.60), under conditions of plane
stress, Poisson's ratio is taken to be equal to 0.35 [this corresponds to a Poisson's ratio
of 0.26, if eqns (2.55) and (2.60) were to be evaluated under conditions of plane strain].

4. OBSERVATIONS AND CONCLUSIONS

Solutions to the problem were obtained for & = 0.2, 0.5 and 1.0, -y = 5.0, 10.0,
15.0 and 20.0, and for each -y, (X = 0.25-y, 0.5-y, 0.75-y. It was found that the stress
distributions for the different values of IIh remained virtually identical. This is illustrated
in Tables 1and 2, which compare peak symmetric and total stresses for different values
of c/h and lo/h. A typical symmetric stress distribution is shown in Fig. 2; that of the
total stress under the indenter is shown in Fig. 3. As can be seen in Fig. 2, for small
values of c/h, the Hertzian distribution approximates the stress under the indenter quite
well. As c/h increases, the distribution changes significantly. In Fig. 3 we see that as
c/h increases, the location of peak stress shifts to the left and the distribution becomes
less and less parabolic. This is because, for small values of c/h, the indenter acts like
a point load. Hence, for small c/h, we have a small region of concentrated stress.

Table 1. Maximum symmetric stresses (case I).

l./h-1O.0 l./h-20.0

c/h l./h-2.5 l./h-5.0 l./h-7.5 l./h-5.0 l./h-l0.0 l./h-15.0

0.2 0.635 , 0.635 0.635 0.635 0.635 0.635

0.5 0.622 0.622 O.fi17 0.625 0.621 0.622

1.0 0.560 0.561 0.561 0.5liO 0.564 0.5li2
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Table 2. Maximum total stresses (case I).

£/h-IO.O £/h-2O.0

c/h £0/h-2.S £o/h-S.O £0/h-7.S £o/tl-S.O £0/tl-10.0 £o/tl-IS.O

0.2 O.ll36 0.636 0.636 0.636 0.636 0.636

0.5 0.648 0.649 0.645 0.650 0.649 0.649

1.0 0.982 0.983 0.981 0.982 0.988 0.983

97

However, as c1h increases, the shape of the indenter becomes more and more signif­
icant. As such, the curvature of the beam is much more pronounced, and the location
of peak stress shifts to the left of the origin.

Tables 3 and 4 show a comparison between the elasticity solution developed here
and the classical beam-theory solution. The elasticity solution is seen to agree well
with the beam-theory solution. However, as cIh approaches 101h, the two solutions
differ to a much larger extent. This behavior is due to the fact that the elasticity solution
is valid only for cIh <C 10 / h.

It is important to note that the rotations in Table 4 have no meaning unless they

1.000

.800

Q. .800
.......
I!'
u

.400

.200

c/h - 0.5

/
c/h -1.0

c/h - 0.2 a Hertz

aoooL..-..o.......::==---~=--~---~~aooo .200 ADO

x/c

Fig. 2. Symmetric stress under the indenter (case I).

0.000
x/c

t/h-1.0

/

-1.000 -.SOO

1.000

.200

CT"
-p-

.lIOO

Fig. 3. Total stress under the indenter (case I).
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Table 3. Displacement comparison (case I).

"o'h-2.5 "0'''-5.0 "o'h-7.5

Elasticity Beal'll Elasticity R",alll Elasticity Realll c/hTheory Theory Theory
~

2 2.0 2.0 16.1 16.1 54.3 54.3 0.2
• 15.5 15.3s:. 127.3 127.5 43A.6 439.0 0.5...... 376.2 383.5 3487.0 3498.0 8705.0 R716.0 1.0

"0/h-5.0 "0/h-11).0 "0/h-15.0

Elasticity Beam Elasticity Realll Elasticity Bealll c/hTheory Theory Theory
0

0 16.2 16.2 127.1 127.6 435.7 435.7 0.2N

• 128.5 128.A 1000.1) 1001.0 3466.0 3467.0 0.5
s:..... 3327.0 3338.0 35890.1) 35900.0 101540.0 11)1570.0 1.0..

are converted to real values. Since the elasticity and beam-theory solutions'were de­
rived using small-angle approximations, it must be ensured that 6 < 60 , where 60 is a
predetermined angle below which rotations are considered "small." Thus it is possible
to place a lower bound on R, the radius of curvature of the indenter:

4 _

Rlh > 6/60 • (4.1)

However, it must also be ensured that no yielding occurs anywhere in the beam, Le.
that 0'max < 0'y, where

O'max = MmaxhlUo, (4.2)

(4.3)

and O'y is the yield stress of the material. The maximum moment occurs at the fixed
end of the beam, and is given by

Mmax = Pio - M.

This condition on 0'max yields another lower bound on R:

Table 4. Rotation comparison (case I).

10'h-2.5 ../h-5.0 ,,0/h-7.5

Elasticity Ileal'll Elasticity 8ePl Elasticity Beam c/h
~ Theory Theory Theory
2
• 1.1 1.2 4.8 4.A 10.8 10.9 0.2

s:..... A.8 9.3 37.6 3R.1 87.0 87.6 0.5..
186.4 215.9 985.8 1015.0 1683.0 1704.0 1.0

../h-5.0 "0/h-10.0 "0/h-15.0

Elasticity Beam Elasticity 8elllll Elasticity Beam c/ItTheory Theory Theory
0

0
N 4.8 4.9 19.0 19.1 43.5 43.6 1).2
•
s:. 37.9 38.5 149.3 149.9 345.8 346.3 0.5...... 940.5 969.0 5262.0 5269.0 10011).1) 10040.0 1.0

(4.4)

(4.5)
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Table S. Minimum allowable values of R/h (case I).

t/h-10.0 t/h-20.0

c/h t/h-2.5 t/h-5.0 t/h-7.5 t/h-5.0 t/h-10.0 t/h-15.0

0.2 4.0 14.0 31.0 14.0 55.0 125.0

0.5 26.0 108.0 250.0 10C1.0 4211.0 9'11.0

1.0 535.0 2825.0 4824.0 ?M5.0 15080.0 2A6110.0
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If 80 = 20° (0.349 rad), cry = SS,OOO ksi and IJ. = 11,S10 ksi, then eqns (4.1) and (4.5)
may be combined into the following:

R/h > max{2.86S9, 1.696(a.P - M)}. (4.6)

Judging from the values of 9, Pand M, it is evident that 2.86S9 i8> 1.696(aP - M) for
each case considered. Thus eqn (4.6) reduces to

....
R/h > 2.86S6. (4.7)

Under these criteria, Table 5 shows the minimum allowable values ofR/h to ensure
small deflections and no yielding. It is seen that for large c/h, and for long beams with
c/h > O.S, the indenter is practically flat. It is, therefore, of some interest to solve the
problem of a flat indenter. This solution is found in the next section.

S. CASE II: FLAT INDENTER-PROBLEM FORMULATION

The problem to be solved is that of an elastic layer of thickness h and length I,
indented by a flat punch on its upper sUlface [Fig. 1(b)]. The boundary conditions for
the elasticity problem and beam·theory problem, whose solutions shall be superposed
to form the solution to the actual problem, are as follows:

Tyy(X, h) = 0, Ix 1< 00, (S.I)

Txy(X, h) = 0, Ix 1< 00, (S.2)

Txy(X, 0) = 0, Ix 1< 00, (S.3)

Tyy(X, 0) = 0, C < Ix 1< 00, (S.4)

Uy(X, 0) = a, 0< Ix 1< c, (S.5)

6 = 0, x = -10, (S.6)

Uy = 0, x = -10, (S.7)

M = 0, x = I - 10, (S.8)

V = 0, x = I - 1o. (5.9)

It is further imposed that the stresses be nonsingular at x = c:

ITyy(C, 0) I < 00. (S.10)

This condition ensures a smooth deflection of the beam for x > 0 and results in a
"receding contact"[6]; here, as the load increases, the contact length decreases with
load.

SAS 22:10<>
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The suitable elasticity solution for this problem is given by eqns (2.11)-(2.15).
Using this formulation, the normal stress is given by

For a flat punch, to have singularities at x = :t e, we let

Es(~) = AJo(~e) + LC 1\1(t)Jo(~t) d~

EA(~ = BJt(~e) + LC 4>(t)Jt(Et) d~.

Substituting into eqn (5.11) yields

A + ~B
e (C 1\1(1) dt (C 4>(t) dt

Tyy(X, 0) = -V..,..(c2-=----r~) B(e - x) + J. V(r _ r) + x Jx tV(r _ x2) .

(5.11)

(5.12)

(5.13)

(5.14)

The first term in eqn (5.14) is singular at x = :t e. For the singularity to vanish at x =
e, it must be true that A + B = O. Then eqn (5.14) becomes

B e - x (C l\1(t) dt (C 4>(t) dt
Tyy(X, 0) = - -; V(e2 _ r) B(e - x) + Jx V(r _ r) + x Jx tV(r - r) .

(5.15)

The moment, shear and average slope are given by eqns (2.20), (2.21) and (2.23), reo
spectively. As before, the beam-theory solution is taken to be

(5.16)

resulting in expressions for moment, shear and average slope given by eqns (2.27),
(2.28) and (2.29), respectively. The constants at, a2, a3 are solved for as before with
identical outcome. Equation (5.5) is treated in a similar manner. Differentiating with
respect to x, and separating into symmetric and antisymmetric components, yields

dUE 1_Y (x, 0) + 2a2X = 0,
dX A

dUE I_Y (x, 0) + at + 3a3r = O.
dX s

(5.17)

(5.18)

Considering each equation one at a time, and following the same procedure as
before, results in the following equations for A, B, l\1(t) and 4>(t):

AK,(x, c) - h
3

1\1(x) + (C l\1(t)K,(x, t) dt + BK2(x, c) + (C 4>(t)K2(x, t) dt = 0,
6 Jo Jo

(5.19)

AK3(x, c) + LC

l\1(t)K3(x, t) dt - BK4 (x, c) + ~ 4>(x) - LC

4>(t)K4 (x, t) dt = 0,

(5.20)
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(5.21)

(5.22)

(5.23)

(5.24)

and'fJ = cor t. Equations (5.19) and (5.20) are two equations in four unknowns. A
third equation was obtained earlier by enforcing nonsingularity of normal stress at x
= c:

A + B = O. (5.25)

The fourth is found by enforcing the boundary condition given by eqn (5.5). After
solving for the constant Do as before (with identical results), eqns (5.5), (2.15), (2.24),
(5.12), (5.13) and (5.25) may be used in a manner analogous to that of solving for the
displacement under the cylindrical indenter to solve for the constant B:

(5.26)

where

and 1') = cor t. Making use of eqns (5.25) and (5.26) in eqns (5.19) and (5.20) yields
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Thus eqns (5.29) and (5.30) are those used to solve for the unknown auxiliary functions
+(x), +(x). These equations are solved numerically. Once l\1(x), <I>(x) are obtained, all
necessary physical quantities may then be calculated.

Stresses may be calculated using eqn (5.15):

B e-x
1'yy(x, 0) = - ;; '\I(e2 _ r) H(e - x)

Lc <I>(t) dt LC <I>(t) dt
+ V + xx(r - r) x tV(r - x2 )

(5.15)

where B is given by eqn (5.26). The resultant load due to the symmetric stresses is
found to be given by

P = TrB - Tr LC l\1(t) dt.

The resultant moment due to the antisymmetric stresses is found to be given by

(5.31)

Tr Tr (C
M = - "i eB -"i)o t<l>(t)dt.

The rotation of the beam at any point x > e is found to be given by

(5.32)

- Tr 3 - 211
6(x) = B[K8(x, e) - K 7(x, e)] - B'4 IJ.h

+ LC l\1(t)K7(X, t) dt + LC <I>(t)K8(x, t) dt,

(5.33)

20000

18.000

::t.
..~ 12.000

11:
0::
~

I 8.000--
4.000

o.~.ooo'---.20""O--.400"""'''--...L.-~-.800'-:-~I.OOO

Fig. 4. Load-contact width (case I). IIh =20.0.
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K ( ) = 1. (ex> [_ h'3 (Sin Ex + sin Elo) _( l ) cos ~(l - 10 )] 1 (~) dl:
7 X, 1'1 D Jo 6 ~ _ sh ~ x + 0 ~2 0 "'I "

'II' 'II' 3 - 2v
- 2D [10 (1 - 10 /2) + x(l - 10 ) - r/2l + 4 fJ.h ' (5.34)

1 (ex> h'3 (COS Ex - cos E/o) 'II'
Ks(x,1') = D Jo"6 J3 _ sh J3 Jt(trI) d~ - 4D (/0 + x}T), (5.35)

and 1') = cor t.

6. PROBLEM SOLUTION

Following a scheme similar to that of Section 3, we define

DtJ.cy
\ll(x) = Jr'1'(Y),

DtJ.cy
4»(x) == Jr 4>(y).

(6.1)

(6.2)

(6.3)

Nondimensionalized stresses, loads, moments and rotations are calculated and may be
transformed back to real quantities through

1")1)' = P't)l)'lc,

P == tJ.!J.P/(l - v),

M == tJo!J.M/(l - v),
- ...
6 == tJ.6Ih.

(6.4)

(6.S)

(6.6)

(6.7)

In order to assess the accuracy of the solution obtained, two tests are performed.
First. the rotation of the beam just beyond x = c is compared to that given by a
standard beam-theory solution:

- 1 2 2 1
6s(e) = 2D P(/o - e ) + D M(lo + e), (6.8)

where e = c+. Second, from the nature of a receding contact problem, as the contact
length decreases to zero, the load PE increases to a certain limit value. Because the
moment ME goes to zero as the contact leqth goes to zero, the beam-theory solution
for displacement tells us that the load PE must approach the beam-theory load PST for
a cantilever beam problem:

PST = 3DtJ. Ilij. (6.9)

The limit load limclh-o PE is compared to the value of PST for each case considered.
Once again, the use of beam-theory equations in subsequent comparison studies

dictates that conditions of plane stress should be assumed in the solution of eqns (S .29)
and (5.30). As before. Poisson's ratio is taken to be equal to 0.3S for the numerical
solution of these equations.
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20.000

18.000

18.000

:t 14.000
N.
~ 12.000
Q:
a: 10000
"i

I 8.000 \
Io/h 015.0

2.400 4.aoo 7.200 •.800 12.000
Rl!. I hZI )( 104 )

Fig. 5. Load-displacement (case I), IIh = 20.0.

1.000 C'I'"
-p- v'1-Tx'7ci'

.800

-1.000 -.'00 0.000
Jo/e

Fig. 6. Total stress under the indenter (case II).
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4.000

~
)(
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~
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:;: 2.000

I....

0.000 l:===::::;:::==::;::==:::::.::===::::::~
0.000 .200 .400 .600 .800 1.000

e/h

Fig. 7. Load-contact width (case II), lIh = 20.0.
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Table 6. Rotation comparison (case II).

11/h-2.5 &1/h-5.0 11/h- 7.5

Elasticity Bellll Elasticity Bealll Elasticity lIellll clh
CI Theory Theory Theory
~

• 0.508 0.544 0.280 0.285 0.192 0.193 0.2
"'--.. 0.457 0.463 0.263 0.264 0.lB3 0.lA3 0.5

0.403 0.303 0.239 0.219 0.172 0.166 1.0

&1/h-5.0 &l1h-10.0 11/h- 15 •O

Elasticity Beam Elasticity Be... Elasticity flelll c/h
~

Theory Theory Theory
CI
N

• 0.280 0.286 0.145 0.146 0.098 0.0911 0.2
e.. 0.263 0.264 O.lAO 0.140 0.095 0.095 0.5

0.239 0.219 0.133 0.130 0.092 0.091 1.0
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7. OBSERVATIONS AND CONCLUSIONS

Solutions to the problem were obtained for 8 = 0.25, 0.5 and 1.0, "y = 10.0 and
20.0, and for each "y, 0:1 = 0.25"y, 0.375"y, 0.5"y and 0.75"y. It was found that the stress
distributions for the different values of IIh were virtually identical. A typical distribution
of the total stress under the indenter, normalized by a factor of V(c2 - r), is shown
in Fig.·6. An examination of the plots of the total stress under the indenter (Fig. 6),
reveals that it is indeed singular at x = - c, but zero at x = +c. Furthermore, the
stress distribution in Fig. 6 for c/h = 1.0 is seen to be an extreme case. This results
from a more pronounced effect of the antisymmetric component in the solution for
cases where c/h is large.

Tables 6 and 8 show a comparison between the solution developed here and the
classical beam-theory solution. As can be seen, the elasticity solution aarees quite well
with the beam-theory solution. Again it is noted that the rotations in Table 6 have no
meaning unless they are converted to real values. Following the same procedure as
before, an upper bound can be placed on the ratio of displacement under the indenter
to beam thickness:

Assuming the same values of eo. CTyand IL, eqn (7.1) reduces to

....
fl./h < 0.349/6.

(7.1)

(7.2)

Under these criteria, Table 7 shows the maximum allowable values of fl./h to ensure
small rotations and no yielding.

Table 7. Maximum allowable values of 4th (case II).

1/h-10.0 1/h-20.0

e/h 11/h- 2•5 &l1h-5.0 11/"-7.5 11/h-S•0 111"-10.0 11/h- 15 •O

0.2 0.68 1.24 1.111 1.:14 2.311 3.54

0.5 0.76 1.32 1.90 1.32 2.48 3.63

1.0 0.86 1.46 2.02 1.46 2.62 3.82
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Table 8. Limit load comparison (case II).

Lith lim PE (x10-z) PaT (xlO·z)
&+0

2.5 3.104 3.200
0

0 5.0 0.398 0.400
i.c

0.118 0.119.... 7.5..
~

5.0 0.399 0.400
0

0.049 0.050... 10.0•.c....
0.015.. 15.0 0.015

The phenomenon of receding contact in this problem is borne out by Fig. 7. As
c/h goes to zero, the nondimensionalized load parameter approaches a limit value
greater than zero. In Table 8, the limit load of the elasticity solution is seen to agree
quite well with the limit load of the beam-theory solution. Furthermore, the limit load
is highest in those cases where the indenter is close to the wall.

In Fig. 7 the relationships between the loads and contact widths for the various
cases considered appear to violate the condition imposed on receding contact problems
to ensure the existence and uniqueness of their solutions[6], since the contact lengths
for a particular beam are not independent of the applied loads on that beam. The contact
length in a receding contact problem will be independent of the level of loading. only
if the ratio of the resultant moment to the applied load is constant for all levels of
loading. In the problems solved through the course of this study, the ratio of moment
to load changes as the applied loading changes; thus the contact length will change as
well, the imposed conditions are not violated, and the problems studied are indeed
receding contact problems.
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